Modelling and monitoring soil organic carbon in European soils

Panos Panagos Emanuele Lugato

European Commission, Joint Research Centre (JRC) - Directorate Sustainable Reources (Ispra)

Soil is cross cutting within many policy initiatives

Proposal for a Directive on Soil Monitoring and Resilience (Soil Monitoring Law, 5 July 2023)

Proposal for the first-ever EU legislation on soils provides a harmonised definition of soil health, puts in place a comprehensive and coherent monitoring framework and fosters sustainable soil management and remediation of contaminated sites.

Soil Organic Carbon concentration is among the 11 descriptors

Pathway to climate neutrality: Climate Law

What is the current situation in the EU?

Earth System

Science

Data

Earth Syst. Sci. Data, 15, 4295-4370, 2023 https://doi.org/10.5194/essd-15-4295-2023 © Author(s) 2023. This work is distributed under the Creative Commons Attribution 4.0 License. <u>()</u>

6

The consolidated European synth and removals for the Europ **United Kingdom: 19**

Matthew J. McGrath¹, Ana Maria Roxana Petrescu², Pt Bradley Matthews⁴, Frank Dentener⁵, Juraj Balkovič⁶, V Gregoire Broquet¹, Philippe Ciais¹, Audrey Fortems-C Giacomo Grassi⁵, Ian Harris^{11,12}, Matthew Jones¹³, Jür Guillaume Monteil¹⁶, Sagr Munassar¹⁷, Paul I. Palmer Mart-Jan Schelhaas¹⁹, Oksana Tarasova²⁰, Matteo V Gianpaolo Balsamo²³, Antoine Berchet¹, Peter Briggs¹⁴, Pat Giulia Conchedda²⁴, Monica Crippa^{5,25}, Stijn N. C. Dellaei Sara Filipek¹⁹, Pierre Friedlingstein²⁷, Richard Fuchs²², I Diego Guizzardi⁵, Dirk Günther²⁹, Richard A. Hough Ronny Lauerwald³¹, Bas Lerink¹⁹, Ingrid T. Luijkx³², Ge Gert-Jan Nabuurs¹⁹, Aurélie Paquirissamy¹, Lucia Perugin Julia Pongratz^{10,37}, Pierre Regnier³⁸, Marko Scholze¹⁶, Yusuf Rona L. Thompson⁴⁰, Francesco N. Tubiello²⁴, Timo

Tg C yr

EU27+UK : Net bottom-up CO₂land fluxes from land use, land use change, and forestry (LULUCF) 400 200 0 \$2 -200-400-600-8001990 1995 2000 2005 2010 2015 2020 Mean of overlapping Year (a) timeseries

- Kyoto Protocol (entering into BLUEvVERIFY-V2021 force) BLUEvGCP-V2021 Paris Agreement ****** H&N-V2021 V UNFCCC LULUCF NGHGI (2021) Mean of the TrendyV10 ensemble ----95% CI for UNFCCC NGHGI (2021) FAOSTAT-V2021
- The land is acting as a C sink mainly because of forests

25/75th percentile for

0/100th percentile for TRENDYv10 DGVMs

ORCHIDEE-V2021-VERIFY

CABLE-POP-V2021-VERIFY

TRENDYv10 DGVMs

SOC stocks in agricultural soils? Modelling approach

- NPP + Rh + C_{exp} + C_{lat}

dC=5.3 Mt yr⁻¹ average loss

European Commission

7

SOC stocks in agricultural soils: Data Driven approach with LUCAS SOIL survey

The JRC manages the LUCAS SOIL survey: sample design, measurement protocols through integrated analysis and monitoring, training of surveyors

EU-wide soil monitoring

• Surveys (and the resulting data) span multiple years 2009, 2015, 2018, 2022

- 42,000 observations
- Soil archive at the JRC premises in Ispra (IT)
- Close cooperation with MSs

EU-wide soil monitoring

LUCAS Contributes to EU-Wide Soil Monitoring

From <u>monitoring</u> chemical, physical and biological soil properties to <u>modelling</u> the spatial distribution of soil properties in the EU

Coarse fragments

• Organic carbon

Carbonate content

• Total nitrogen content

• Phosphorous content

• Cation exchange capacity

Extractable potassium content

sand)

• pH

- Electrical conductivity
- Particle-size distribution (clay, silt, Heavy Metals
 - Multispectral properties
 - Pesticides (90 substances)
 - Neonicotinoid insecticides
 - Fungicides (e.g. copper in soils)
 - Herbicides
 - Antibiotics
 - Soil Biodiversity

Is LUCAS a SOC monitoring framework?

- Only topsoil 0-20 cm For 2022 survey 0-30cm
- No systematic bulk density Only a subset of all samples in 2018 and <u>2022</u>
- Limited management information (tillage, cover crops, etc)

2024+ LUCAS 2.0

Better integrated in MS programmes

New parameters

Depth aspects

Harmonisation with MS laboratories

Soil organic carbon stocks in European croplands and grasslands: How much have we lost in the past decade?

Daniele De Rosa¹[®] | Cristiano Ballabio¹[®] | Emanuele Lugato¹[®] | Matteo Fasiolo²[®] | Arwyn Jones¹[®] | Panos Panagos¹[®]

10

Data Driven approach

2018-09 losses ~ 70 Mt C (0-20cm depth) = **7.7 Mt C loss per year**

Scenario analysis (SOC stock changed by 2050)

Arable land allocated to AMP (%)

Scenario	AR_GR_LUC	AR_RES	AR_RT	AR_RET	AR_LEY	AR_CC	Total
Economic	2	2	2	2	2	2	12
Intermediate	5	5	5	5	2	2	24
Environmental	10	2	2	2	5	7	28

- Conversion from arable to grassland (LUC_AR_GR);
- 2) Crop residue management (AR_RES);
- 3) Reduced tillage scenario (AR_RT)
- 4) Combined residue incorporation +

reduced tillage (AR_RET);

5) Ley in rotation (AR_LEY);

6) Cover crop (AR_CC);

Organic soils: a key "special" issue EU emissions from organic soils

Source: Annual European Union greenhouse gas inventory 1990–2018

17 Mha -> 95 Mt CO₂

Martin, N. & Couwenberg, J.

	Land use	Area	ICECF	Emissions from Org. Soils.	
	subcategory	(Kha)	(tC/ha)	(Kt CO ₂)	
	4A1	12 264	[-2.60; 0.65]	13 631]
- du	4A2	407		1 494]
1 1 25	4B1	1 242	[-10.01; -1.00]	25 813	
	4B2	273		5 814	85%
	4C1	4 132	[-6.80; 0.25]	42 150	
A	4C2	354	Large uncertainty EF	5 683	

The EU emissions from organic soils are at least 4-5 times (7-8 times Greifswald estimates) higher those from croplands Peatlands as a hotspot of emissions

Carbon farming

A green business

model rewarding land managers for improved land management practices, resulting in carbon sequestration in ecosystems and reducing the release of carbon to the atmosphere.

Benefits of carbon farming:

Increased carbon removals

Additional income for land managers

More biodiversity and nature

Increased climate resilience of farm and forest land

Commission

Proposal for a Regulation on an EU certification for carbon removal COM(2022) 672 final

Carbon farming will require the development of a robust MRV scheme:

- in a cost effective way to monitor the carbon changes
- Including emission removal at parcel scale

JRC develops Carbon Removal Land (CRL) project (funded by DG CLIMA)

Test /design new methods (MRV) for monitoring – calculating the carbon budget at parcel scale.

Integrates spatial explicit data from LPIS, Remote Sensing and LUCAS

EUSO: Assessing Policy Impact

Monitoring soil health and policies

EUSO Soil Dashboard

Convergence of scientific evidence

- 18 Soil degradation indicators
- 63 % of unhealthy soils
- Dashboard shows location and different types of soil degradation in the EU

https://esdac.jrc.ec.europa.eu/esdacviewer/euso-dashboard/

Roadmap towards healthy soils by 2030

European Commission

Conclusions

- Agricultural soils are a small C source with regional variations in the EU (mostly related to climate change)
- Carbon farming (CF) can have significant mitigation potential (net removal) potential but requires large up-take of CF activities
- Promp effect of re-wetting organic soils (reduced emissions)
- <u>JRC</u> has developed estimates of carbon trends (Biophysical models, Data driven approaches) – with high uncertainties
- Three Soil Mission projects (MRV) : CREDIBLE, MRV4SOC, MARVIC (Collaboration with Soil research community and upcoming Soil Mission projects)
- Soil Mission Workprogramme 2024: even more ambitious calls for proposals on carbon farming and Living Labs

European

¹⁷Soil Monitoring Law: from 20,000 points to 200,000 points measured points?

Thank you

Panos.Panagos@ec.europa.eu Emanuele.Lugato@ec.europa.eu

© European Union 2023

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

